Breaking Language Barriers: Cross-lingual Continual Pre-training At Scale · The Large Language Model Bible Contribute to LLM-Bible

Breaking Language Barriers: Cross-lingual Continual Pre-training At Scale

Zheng Wenzhen, Pan Wenbo, Xu Xu, Qin Libo, Yue Li, Zhou Ming. Arxiv 2024

[Paper]    
Pretraining Methods Training Techniques

In recent years, Large Language Models (LLMs) have made significant strides towards Artificial General Intelligence. However, training these models from scratch requires substantial computational resources and vast amounts of text data. In this paper, we explore an alternative approach to constructing an LLM for a new language by continually pretraining (CPT) from existing pretrained LLMs, instead of using randomly initialized parameters. Based on parallel experiments on 40 model sizes ranging from 40M to 5B parameters, we find that 1) CPT converges faster and saves significant resources in a scalable manner; 2) CPT adheres to an extended scaling law derived from Hoffmann et al. (2022) with a joint data-parameter scaling term; 3) The compute-optimal data-parameter allocation for CPT markedly differs based on our estimated scaling factors; 4) The effectiveness of transfer at scale is influenced by training duration and linguistic properties, while robust to data replaying, a method that effectively mitigates catastrophic forgetting in CPT. We hope our findings provide deeper insights into the transferability of LLMs at scale for the research community.

Similar Work