SPL: A Socratic Playground For Learning Powered By Large Language Model · The Large Language Model Bible Contribute to LLM-Bible

SPL: A Socratic Playground For Learning Powered By Large Language Model

Zhang Liang, Lin Jionghao, Kuang Ziyi, Xu Sheng, Yeasin Mohammed, Hu Xiangen. Arxiv 2024

[Paper]    
Applications GPT Model Architecture Prompting Reinforcement Learning

Dialogue-based Intelligent Tutoring Systems (ITSs) have significantly advanced adaptive and personalized learning by automating sophisticated human tutoring strategies within interactive dialogues. However, replicating the nuanced patterns of expert human communication remains a challenge in Natural Language Processing (NLP). Recent advancements in NLP, particularly Large Language Models (LLMs) such as OpenAI’s GPT-4, offer promising solutions by providing human-like and context-aware responses based on extensive pre-trained knowledge. Motivated by the effectiveness of LLMs in various educational tasks (e.g., content creation and summarization, problem-solving, and automated feedback provision), our study introduces the Socratic Playground for Learning (SPL), a dialogue-based ITS powered by the GPT-4 model, which employs the Socratic teaching method to foster critical thinking among learners. Through extensive prompt engineering, SPL can generate specific learning scenarios and facilitates efficient multi-turn tutoring dialogues. The SPL system aims to enhance personalized and adaptive learning experiences tailored to individual needs, specifically focusing on improving critical thinking skills. Our pilot experimental results from essay writing tasks demonstrate SPL has the potential to improve tutoring interactions and further enhance dialogue-based ITS functionalities. Our study, exemplified by SPL, demonstrates how LLMs enhance dialogue-based ITSs and expand the accessibility and efficacy of educational technologies.

Similar Work