Uncovering Hidden Connections: Iterative Search And Reasoning For Video-grounded Dialog · The Large Language Model Bible Contribute to LLM-Bible

Uncovering Hidden Connections: Iterative Search And Reasoning For Video-grounded Dialog

Zhang Haoyu, Liu Meng, Wang Yaowei, Cao Da, Guan Weili, Nie Liqiang. Arxiv 2023

[Paper]    
Applications GPT Model Architecture Tools

In contrast to conventional visual question answering, video-grounded dialog necessitates a profound understanding of both dialog history and video content for accurate response generation. Despite commendable progress made by existing approaches, they still face the challenges of incrementally understanding complex dialog history and assimilating video information. In response to these challenges, we present an iterative search and reasoning framework, which consists of a textual encoder, a visual encoder, and a generator. Specifically, we devise a path search and aggregation strategy in the textual encoder, mining core cues from dialog history that are pivotal to understanding the posed questions. Concurrently, our visual encoder harnesses an iterative reasoning network to extract and emphasize critical visual markers from videos, enhancing the depth of visual comprehension. Finally, we utilize the pre-trained GPT-2 model as our answer generator to decode the mined hidden clues into coherent and contextualized answers. Extensive experiments on three public datasets demonstrate the effectiveness and generalizability of our proposed framework.

Similar Work