Linear Attention Via Orthogonal Memory · The Large Language Model Bible Contribute to LLM-Bible

Linear Attention Via Orthogonal Memory

Zhang Jun, Jiang Shuyang, Feng Jiangtao, Zheng Lin, Kong Lingpeng. Arxiv 2023

[Paper]    
Attention Mechanism Efficiency And Optimization Language Modeling Model Architecture Pretraining Methods Transformer

Efficient attentions have greatly improved the computational efficiency of Transformers. However, most existing linear attention mechanisms suffer from an efficiency degradation problem, leading to inefficiencies in causal language modeling and hindering their application in long-range language models. This problem is more pronounced under language modeling with unbounded contexts. In this paper, we propose \textbf{L}inear \textbf{A}ttention \textbf{V}ia \textbf{O}rthogonal memory~(\shortname) to address these limitations, achieving strong performance while maintaining linear complexity. \shortname employs orthogonal decomposition to compress a context into a fixed-size orthogonal memory while effectively minimizing redundancy within the context. Given that orthogonal memory compresses global information, we further dissect the context to amplify fine-grained local information. Additionally, we embed the relative position encoding into \shortname to improve the extrapolation ability. Experimental results show that \shortname greatly improves the efficiency of the causal language model with the best extrapolation performance and outperforms other efficient baselines. Further, we endeavor to employ \shortname for unbounded language modeling and successfully scale the context length to 128K.

Similar Work