LEIA: Facilitating Cross-lingual Knowledge Transfer In Language Models With Entity-based Data Augmentation · The Large Language Model Bible Contribute to LLM-Bible

LEIA: Facilitating Cross-lingual Knowledge Transfer In Language Models With Entity-based Data Augmentation

Yamada Ikuya, Ri Ryokan. Arxiv 2024

[Paper] [Code]    
Applications Efficiency And Optimization Has Code Language Modeling Reinforcement Learning Training Techniques

Adapting English-based large language models (LLMs) to other languages has become increasingly popular due to the efficiency and potential of cross-lingual transfer. However, existing language adaptation methods often overlook the benefits of cross-lingual supervision. In this study, we introduce LEIA, a language adaptation tuning method that utilizes Wikipedia entity names aligned across languages. This method involves augmenting the target language corpus with English entity names and training the model using left-to-right language modeling. We assess LEIA on diverse question answering datasets using 7B-parameter LLMs, demonstrating significant performance gains across various non-English languages. The source code is available at https://github.com/studio-ousia/leia.

Similar Work