Redagent: Red Teaming Large Language Models With Context-aware Autonomous Language Agent · The Large Language Model Bible Contribute to LLM-Bible

Redagent: Red Teaming Large Language Models With Context-aware Autonomous Language Agent

Xu Huiyu, Zhang Wenhui, Wang Zhibo, Xiao Feng, Zheng Rui, Feng Yunhe, Ba Zhongjie, Ren Kui. Arxiv 2024

[Paper]    
Agentic Applications Efficiency And Optimization GPT Model Architecture Prompting RAG Reinforcement Learning Responsible AI Security

Recently, advanced Large Language Models (LLMs) such as GPT-4 have been integrated into many real-world applications like Code Copilot. These applications have significantly expanded the attack surface of LLMs, exposing them to a variety of threats. Among them, jailbreak attacks that induce toxic responses through jailbreak prompts have raised critical safety concerns. To identify these threats, a growing number of red teaming approaches simulate potential adversarial scenarios by crafting jailbreak prompts to test the target LLM. However, existing red teaming methods do not consider the unique vulnerabilities of LLM in different scenarios, making it difficult to adjust the jailbreak prompts to find context-specific vulnerabilities. Meanwhile, these methods are limited to refining jailbreak templates using a few mutation operations, lacking the automation and scalability to adapt to different scenarios. To enable context-aware and efficient red teaming, we abstract and model existing attacks into a coherent concept called “jailbreak strategy” and propose a multi-agent LLM system named RedAgent that leverages these strategies to generate context-aware jailbreak prompts. By self-reflecting on contextual feedback in an additional memory buffer, RedAgent continuously learns how to leverage these strategies to achieve effective jailbreaks in specific contexts. Extensive experiments demonstrate that our system can jailbreak most black-box LLMs in just five queries, improving the efficiency of existing red teaming methods by two times. Additionally, RedAgent can jailbreak customized LLM applications more efficiently. By generating context-aware jailbreak prompts towards applications on GPTs, we discover 60 severe vulnerabilities of these real-world applications with only two queries per vulnerability. We have reported all found issues and communicated with OpenAI and Meta for bug fixes.

Similar Work