Language Models Are Few-shot Multilingual Learners · The Large Language Model Bible Contribute to LLM-Bible

Language Models Are Few-shot Multilingual Learners

Winata Genta Indra, Madotto Andrea, Lin Zhaojiang, Liu Rosanne, Yosinski Jason, Fung Pascale. Arxiv 2021

[Paper]    
Few Shot GPT Model Architecture

General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models.

Similar Work