Easy Problems That Llms Get Wrong · The Large Language Model Bible Contribute to LLM-Bible

Easy Problems That Llms Get Wrong

Williams Sean, Huckle James. Arxiv 2024

[Paper]    
Applications Prompting Training Techniques

We introduce a comprehensive Linguistic Benchmark designed to evaluate the limitations of Large Language Models (LLMs) in domains such as logical reasoning, spatial intelligence, and linguistic understanding, among others. Through a series of straightforward questions, it uncovers the significant limitations of well-regarded models to perform tasks that humans manage with ease. It also highlights the potential of prompt engineering to mitigate some errors and underscores the necessity for better training methodologies. Our findings stress the importance of grounding LLMs with human reasoning and common sense, emphasising the need for human-in-the-loop for enterprise applications. We hope this work paves the way for future research to enhance the usefulness and reliability of new models.

Similar Work