[Paper]
ChatGPT is a groundbreaking ``chatbot”–an AI interface built on a large language model that was trained on an enormous corpus of human text to emulate human conversation. Beyond its ability to converse in a plausible way, it has attracted attention for its ability to competently answer questions from the bar exam and from MBA coursework, and to provide useful assistance in writing computer code. These apparent abilities have prompted discussion of ChatGPT as both a threat to the integrity of higher education and conversely as a powerful teaching tool. In this work we present a preliminary analysis of how two versions of ChatGPT (ChatGPT3.5 and ChatGPT4) fare in the field of first-semester university physics, using a modified version of the Force Concept Inventory (FCI) to assess whether it can give correct responses to conceptual physics questions about kinematics and Newtonian dynamics. We demonstrate that, by some measures, ChatGPT3.5 can match or exceed the median performance of a university student who has completed one semester of college physics, though its performance is notably uneven and the results are nuanced. By these same measures, we find that ChatGPT4’s performance is approaching the point of being indistinguishable from that of an expert physicist when it comes to introductory mechanics topics. After the completion of our work we became aware of Ref [1], which preceded us to publication and which completes an extensive analysis of the abilities of ChatGPT3.5 in a physics class, including a different modified version of the FCI. We view this work as confirming that portion of their results, and extending the analysis to ChatGPT4, which shows rapid and notable improvement in most, but not all respects.