[Paper]
The extraordinary performance of large language models has not only reshaped the research landscape in the field of NLP but has also demonstrated its exceptional applicative potential in various domains. However, the potential of these models in mining relationships from graph data remains under-explored. Graph neural networks, as a popular research area in recent years, have numerous studies on relationship mining. Yet, current cutting-edge research in graph neural networks has not been effectively integrated with large language models, leading to limited efficiency and capability in graph relationship mining tasks. A primary challenge is the inability of LLMs to deeply exploit the edge information in graphs, which is critical for understanding complex node relationships. This gap limits the potential of LLMs to extract meaningful insights from graph structures, limiting their applicability in more complex graph-based analysis. We focus on how to utilize existing LLMs for mining and understanding relationships in graph data, applying these techniques to recommendation tasks. We propose an innovative framework that combines the strong contextual representation capabilities of LLMs with the relationship extraction and analysis functions of GNNs for mining relationships in graph data. Specifically, we design a new prompt construction framework that integrates relational information of graph data into natural language expressions, aiding LLMs in more intuitively grasping the connectivity information within graph data. Additionally, we introduce graph relationship understanding and analysis functions into LLMs to enhance their focus on connectivity information in graph data. Our evaluation on real-world datasets demonstrates the frameworkâs ability to understand connectivity information in graph data.