Lilt: A Simple Yet Effective Language-independent Layout Transformer For Structured Document Understanding · The Large Language Model Bible Contribute to LLM-Bible

Lilt: A Simple Yet Effective Language-independent Layout Transformer For Structured Document Understanding

Wang Jiapeng, Jin Lianwen, Ding Kai. Arxiv 2022

[Paper] [Code]    
Attention Mechanism Has Code Model Architecture Pretraining Methods Training Techniques Transformer

Structured document understanding has attracted considerable attention and made significant progress recently, owing to its crucial role in intelligent document processing. However, most existing related models can only deal with the document data of specific language(s) (typically English) included in the pre-training collection, which is extremely limited. To address this issue, we propose a simple yet effective Language-independent Layout Transformer (LiLT) for structured document understanding. LiLT can be pre-trained on the structured documents of a single language and then directly fine-tuned on other languages with the corresponding off-the-shelf monolingual/multilingual pre-trained textual models. Experimental results on eight languages have shown that LiLT can achieve competitive or even superior performance on diverse widely-used downstream benchmarks, which enables language-independent benefit from the pre-training of document layout structure. Code and model are publicly available at https://github.com/jpWang/LiLT.

Similar Work