Towards Reasoning-aware Explainable VQA · The Large Language Model Bible Contribute to LLM-Bible

Towards Reasoning-aware Explainable VQA

Vaideeswaran Rakesh, Gao Feng, Mathur Abhinav, Thattai Govind. Arxiv 2022

[Paper]    
Applications Attention Mechanism Interpretability And Explainability Model Architecture Multimodal Models Pretraining Methods Tools Transformer

The domain of joint vision-language understanding, especially in the context of reasoning in Visual Question Answering (VQA) models, has garnered significant attention in the recent past. While most of the existing VQA models focus on improving the accuracy of VQA, the way models arrive at an answer is oftentimes a black box. As a step towards making the VQA task more explainable and interpretable, our method is built upon the SOTA VQA framework by augmenting it with an end-to-end explanation generation module. In this paper, we investigate two network architectures, including Long Short-Term Memory (LSTM) and Transformer decoder, as the explanation generator. Our method generates human-readable textual explanations while maintaining SOTA VQA accuracy on the GQA-REX (77.49%) and VQA-E (71.48%) datasets. Approximately 65.16% of the generated explanations are approved by humans as valid. Roughly 60.5% of the generated explanations are valid and lead to the correct answers.

Similar Work