Mlongt5: A Multilingual And Efficient Text-to-text Transformer For Longer Sequences · The Large Language Model Bible Contribute to LLM-Bible

Mlongt5: A Multilingual And Efficient Text-to-text Transformer For Longer Sequences

Uthus David, Ontañón Santiago, Ainslie Joshua, Guo Mandy. Arxiv 2023

[Paper]    
Applications BERT Model Architecture Pretraining Methods RAG Training Techniques Transformer

We present our work on developing a multilingual, efficient text-to-text transformer that is suitable for handling long inputs. This model, called mLongT5, builds upon the architecture of LongT5, while leveraging the multilingual datasets used for pretraining mT5 and the pretraining tasks of UL2. We evaluate this model on a variety of multilingual summarization and question-answering tasks, and the results show stronger performance for mLongT5 when compared to existing multilingual models such as mBART or M-BERT.

Similar Work