Automating Code-related Tasks Through Transformers: The Impact Of Pre-training · The Large Language Model Bible Contribute to LLM-Bible

Automating Code-related Tasks Through Transformers: The Impact Of Pre-training

Tufano Rosalia, Pascarella Luca, Bavota Gabriele. Arxiv 2023

[Paper]    
Applications BERT Fine Tuning Masked Language Model Model Architecture Pretraining Methods Reinforcement Learning Survey Paper Training Techniques Transformer

Transformers have gained popularity in the software engineering (SE) literature. These deep learning models are usually pre-trained through a self-supervised objective, meant to provide the model with basic knowledge about a language of interest (e.g., Java). A classic pre-training objective is the masked language model (MLM), in which a percentage of tokens from the input (e.g., a Java method) is masked, with the model in charge of predicting them. Once pre-trained, the model is then fine-tuned to support the specific downstream task of interest (e.g., code summarization). While there is evidence suggesting the boost in performance provided by pre-training, little is known about the impact of the specific pre-training objective(s) used. Indeed, MLM is just one of the possible pre-training objectives and recent work from the natural language processing field suggest that pre-training objectives tailored for the specific downstream task of interest may substantially boost the model’s performance. In this study, we focus on the impact of pre-training objectives on the performance of transformers when automating code-related tasks. We start with a systematic literature review aimed at identifying the pre-training objectives used in SE. Then, we pre-train 32 transformers using both (i) generic pre-training objectives usually adopted in SE; and (ii) pre-training objectives tailored to specific code-related tasks subject of our experimentation, namely bug-fixing, code summarization, and code completion. We also compare the pre-trained models with non pre-trained ones. Our results show that: (i) pre-training helps in boosting performance only if the amount of fine-tuning data available is small; (ii) the MLM objective is usually sufficient to maximize the prediction performance of the model, even when comparing it with pre-training objectives specialized for the downstream task at hand.

Similar Work