Ehragent: Code Empowers Large Language Models For Few-shot Complex Tabular Reasoning On Electronic Health Records · The Large Language Model Bible Contribute to LLM-Bible

Ehragent: Code Empowers Large Language Models For Few-shot Complex Tabular Reasoning On Electronic Health Records

Shi Wenqi, Xu Ran, Zhuang Yuchen, Yu Yue, Zhang Jieyu, Wu Hang, Zhu Yuanda, Ho Joyce, Yang Carl, Wang May D.. Arxiv 2024

[Paper]    
Agent Agentic Applications Few Shot Merging RAG Reinforcement Learning

Large language models (LLMs) have demonstrated exceptional capabilities in planning and tool utilization as autonomous agents, but few have been developed for medical problem-solving. We propose EHRAgent, an LLM agent empowered with a code interface, to autonomously generate and execute code for multi-tabular reasoning within electronic health records (EHRs). First, we formulate an EHR question-answering task into a tool-use planning process, efficiently decomposing a complicated task into a sequence of manageable actions. By integrating interactive coding and execution feedback, EHRAgent learns from error messages and improves the originally generated code through iterations. Furthermore, we enhance the LLM agent by incorporating long-term memory, which allows EHRAgent to effectively select and build upon the most relevant successful cases from past experiences. Experiments on three real-world multi-tabular EHR datasets show that EHRAgent outperforms the strongest baseline by up to 29.6% in success rate. EHRAgent leverages the emerging few-shot learning capabilities of LLMs, enabling autonomous code generation and execution to tackle complex clinical tasks with minimal demonstrations.

Similar Work