Towards Llm-based Autograding For Short Textual Answers · The Large Language Model Bible Contribute to LLM-Bible

Towards Llm-based Autograding For Short Textual Answers

Schneider Johannes, Schenk Bernd, Niklaus Christina. Proceedings of the 2023

[Paper]    
Ethics And Bias GPT Model Architecture Reinforcement Learning

Grading exams is an important, labor-intensive, subjective, repetitive, and frequently challenging task. The feasibility of autograding textual responses has greatly increased thanks to the availability of large language models (LLMs) such as ChatGPT and the substantial influx of data brought about by digitalization. However, entrusting AI models with decision-making roles raises ethical considerations, mainly stemming from potential biases and issues related to generating false information. Thus, in this manuscript, we provide an evaluation of a large language model for the purpose of autograding, while also highlighting how LLMs can support educators in validating their grading procedures. Our evaluation is targeted towards automatic short textual answers grading (ASAG), spanning various languages and examinations from two distinct courses. Our findings suggest that while “out-of-the-box” LLMs provide a valuable tool to provide a complementary perspective, their readiness for independent automated grading remains a work in progress, necessitating human oversight.

Similar Work