Diffusion Glancing Transformer For Parallel Sequence To Sequence Learning · The Large Language Model Bible Contribute to LLM-Bible

Diffusion Glancing Transformer For Parallel Sequence To Sequence Learning

Qian Lihua, Wang Mingxuan, Liu Yang, Zhou Hao. Arxiv 2022

[Paper]    
Applications Efficiency And Optimization GPT Language Modeling Merging Model Architecture Pretraining Methods Transformer

Previously, non-autoregressive models were widely perceived as being superior in generation efficiency but inferior in generation quality due to the difficulties of modeling multiple target modalities. To enhance the multi-modality modeling ability, we propose the diffusion glancing transformer, which employs a modality diffusion process and residual glancing sampling. The modality diffusion process is a discrete process that interpolates the multi-modal distribution along the decoding steps, and the residual glancing sampling approach guides the model to continuously learn the remaining modalities across the layers. Experimental results on various machine translation and text generation benchmarks demonstrate that DIFFGLAT achieves better generation accuracy while maintaining fast decoding speed compared with both autoregressive and non-autoregressive models.

Similar Work