Customized Retrieval Augmented Generation And Benchmarking For EDA Tool Documentation QA · The Large Language Model Bible Contribute to LLM-Bible

Customized Retrieval Augmented Generation And Benchmarking For EDA Tool Documentation QA

Pu Yuan, He Zhuolun, Qiu Tairu, Wu Haoyuan, Yu Bei. Arxiv 2024

[Paper] [Code]    
Fine Tuning Has Code Pretraining Methods RAG Tools Training Techniques

Retrieval augmented generation (RAG) enhances the accuracy and reliability of generative AI models by sourcing factual information from external databases, which is extensively employed in document-grounded question-answering (QA) tasks. Off-the-shelf RAG flows are well pretrained on general-purpose documents, yet they encounter significant challenges when being applied to knowledge-intensive vertical domains, such as electronic design automation (EDA). This paper addresses such issue by proposing a customized RAG framework along with three domain-specific techniques for EDA tool documentation QA, including a contrastive learning scheme for text embedding model fine-tuning, a reranker distilled from proprietary LLM, and a generative LLM fine-tuned with high-quality domain corpus. Furthermore, we have developed and released a documentation QA evaluation benchmark, ORD-QA, for OpenROAD, an advanced RTL-to-GDSII design platform. Experimental results demonstrate that our proposed RAG flow and techniques have achieved superior performance on ORD-QA as well as on a commercial tool, compared with state-of-the-arts. The ORD-QA benchmark and the training dataset for our customized RAG flow are open-source at https://github.com/lesliepy99/RAG-EDA.

Similar Work