Humaneval-xl: A Multilingual Code Generation Benchmark For Cross-lingual Natural Language Generalization · The Large Language Model Bible Contribute to LLM-Bible

Humaneval-xl: A Multilingual Code Generation Benchmark For Cross-lingual Natural Language Generalization

Peng Qiwei, Chai Yekun, Li Xuhong. Arxiv 2024

[Paper] [Code]    
Applications Has Code Prompting RAG Reinforcement Learning Tools

Large language models (LLMs) have made significant progress in generating codes from textual prompts. However, existing benchmarks have mainly concentrated on translating English prompts to multilingual codes or have been constrained to very limited natural languages (NLs). These benchmarks have overlooked the vast landscape of massively multilingual NL to multilingual code, leaving a critical gap in the evaluation of multilingual LLMs. In response, we introduce HumanEval-XL, a massively multilingual code generation benchmark specifically crafted to address this deficiency. HumanEval-XL establishes connections between 23 NLs and 12 programming languages (PLs), and comprises of a collection of 22,080 prompts with an average of 8.33 test cases. By ensuring parallel data across multiple NLs and PLs, HumanEval-XL offers a comprehensive evaluation platform for multilingual LLMs, allowing the assessment of the understanding of different NLs. Our work serves as a pioneering step towards filling the void in evaluating NL generalization in the area of multilingual code generation. We make our evaluation code and data publicly available at \url{https://github.com/FloatAI/humaneval-xl}.

Similar Work