Phased Instruction Fine-tuning For Large Language Models · The Large Language Model Bible Contribute to LLM-Bible

Phased Instruction Fine-tuning For Large Language Models

Pang Wei, Zhou Chuan, Zhou Xiao-hua, Wang Xiaojie. Arxiv 2024

[Paper] [Code]    
Fine Tuning GPT Has Code Model Architecture Pretraining Methods Reinforcement Learning Training Techniques

Instruction Fine-Tuning enhances pre-trained language models from basic next-word prediction to complex instruction-following. However, existing One-off Instruction Fine-Tuning (One-off IFT) method, applied on a diverse instruction, may not effectively boost models’ adherence to instructions due to the simultaneous handling of varying instruction complexities. To improve this, Phased Instruction Fine-Tuning (Phased IFT) is proposed, based on the idea that learning to follow instructions is a gradual process. It assesses instruction difficulty using GPT-4, divides the instruction data into subsets of increasing difficulty, and uptrains the model sequentially on these subsets. Experiments with Llama-2 7B/13B/70B, Llama3 8/70B and Mistral-7B models using Alpaca data show that Phased IFT significantly outperforms One-off IFT, supporting the progressive alignment hypothesis and providing a simple and efficient way to enhance large language models. Codes and datasets from our experiments are freely available at https://github.com/xubuvd/PhasedSFT.

Similar Work