Visually Guided Generative Text-layout Pre-training For Document Intelligence · The Large Language Model Bible Contribute to LLM-Bible

Visually Guided Generative Text-layout Pre-training For Document Intelligence

Mao Zhiming, Bai Haoli, Hou Lu, Wei Jiansheng, Jiang Xin, Liu Qun, Wong Kam-fai. Arxiv 2024

[Paper]    
Applications Model Architecture Pretraining Methods Reinforcement Learning Training Techniques Transformer

Prior study shows that pre-training techniques can boost the performance of visual document understanding (VDU), which typically requires models to gain abilities to perceive and reason both document texts and layouts (e.g., locations of texts and table-cells). To this end, we propose visually guided generative text-layout pre-training, named ViTLP. Given a document image, the model optimizes hierarchical language and layout modeling objectives to generate the interleaved text and layout sequence. In addition, to address the limitation of processing long documents by Transformers, we introduce a straightforward yet effective multi-segment generative pre-training scheme, facilitating ViTLP to process word-intensive documents of any length. ViTLP can function as a native OCR model to localize and recognize texts of document images. Besides, ViTLP can be effectively applied to various downstream VDU tasks. Extensive experiments show that ViTLP achieves competitive performance over existing baselines on benchmark VDU tasks, including information extraction, document classification, and document question answering.

Similar Work