Integrating Large Language Models Into Recommendation Via Mutual Augmentation And Adaptive Aggregation · The Large Language Model Bible Contribute to LLM-Bible

Integrating Large Language Models Into Recommendation Via Mutual Augmentation And Adaptive Aggregation

Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang, Yuanzhang Xiao, Mingjie Zhan, Linqi Song. Arxiv 2024

[Paper]    
Prompting RAG Reinforcement Learning Tools

Conventional recommendation methods have achieved notable advancements by harnessing collaborative or sequential information from user behavior. Recently, large language models (LLMs) have gained prominence for their capabilities in understanding and reasoning over textual semantics, and have found utility in various domains, including recommendation. Conventional recommendation methods and LLMs each have their strengths and weaknesses. While conventional methods excel at mining collaborative information and modeling sequential behavior, they struggle with data sparsity and the long-tail problem. LLMs, on the other hand, are proficient at utilizing rich textual contexts but face challenges in mining collaborative or sequential information. Despite their individual successes, there is a significant gap in leveraging their combined potential to enhance recommendation performance. In this paper, we introduce a general and model-agnostic framework known as \textbf{L}arge \textbf{la}nguage model with \textbf{m}utual augmentation and \textbf{a}daptive aggregation for \textbf{Rec}ommendation (\textbf{Llama4Rec}). Llama4Rec synergistically combines conventional and LLM-based recommendation models. Llama4Rec proposes data augmentation and prompt augmentation strategies tailored to enhance the conventional model and LLM respectively. An adaptive aggregation module is adopted to combine the predictions of both kinds of models to refine the final recommendation results. Empirical studies on three real-world datasets validate the superiority of Llama4Rec, demonstrating its consistent outperformance of baseline methods and significant improvements in recommendation performance.

Similar Work