Mm-safetybench: A Benchmark For Safety Evaluation Of Multimodal Large Language Models · The Large Language Model Bible Contribute to LLM-Bible

Mm-safetybench: A Benchmark For Safety Evaluation Of Multimodal Large Language Models

Liu Xin, Zhu Yichen, Gu Jindong, Lan Yunshi, Yang Chao, Qiao Yu. Arxiv 2023

[Paper] [Code]    
Has Code Multimodal Models Prompting Responsible AI Security Tools

The security concerns surrounding Large Language Models (LLMs) have been extensively explored, yet the safety of Multimodal Large Language Models (MLLMs) remains understudied. In this paper, we observe that Multimodal Large Language Models (MLLMs) can be easily compromised by query-relevant images, as if the text query itself were malicious. To address this, we introduce MM-SafetyBench, a comprehensive framework designed for conducting safety-critical evaluations of MLLMs against such image-based manipulations. We have compiled a dataset comprising 13 scenarios, resulting in a total of 5,040 text-image pairs. Our analysis across 12 state-of-the-art models reveals that MLLMs are susceptible to breaches instigated by our approach, even when the equipped LLMs have been safety-aligned. In response, we propose a straightforward yet effective prompting strategy to enhance the resilience of MLLMs against these types of attacks. Our work underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source MLLMs against potential malicious exploits. The resource is available at https://github.com/isXinLiu/MM-SafetyBench

Similar Work