Say More With Less: Understanding Prompt Learning Behaviors Through Gist Compression · The Large Language Model Bible Contribute to LLM-Bible

Say More With Less: Understanding Prompt Learning Behaviors Through Gist Compression

Li Xinze, Liu Zhenghao, Xiong Chenyan, Yu Shi, Yan Yukun, Wang Shuo, Yu Ge. Arxiv 2024

[Paper] [Code]    
Has Code Prompting Tools

Large language models (LLMs) require lengthy prompts as the input context to produce output aligned with user intentions, a process that incurs extra costs during inference. In this paper, we propose the Gist COnditioned deCOding (Gist-COCO) model, introducing a novel method for compressing prompts which also can assist the prompt interpretation and engineering. Gist-COCO employs an encoder-decoder based language model and then incorporates an additional encoder as a plugin module to compress prompts with inputs using gist tokens. It finetunes the compression plugin module and uses the representations of gist tokens to emulate the raw prompts in the vanilla language model. By verbalizing the representations of gist tokens into gist prompts, the compression ability of Gist-COCO can be generalized to different LLMs with high compression rates. Our experiments demonstrate that Gist-COCO outperforms previous prompt compression models in both passage and instruction compression tasks. Further analysis on gist verbalization results suggests that our gist prompts serve different functions in aiding language models. They may directly provide potential answers, generate the chain-of-thought, or simply repeat the inputs. All data and codes are available at https://github.com/OpenMatch/Gist-COCO .

Similar Work