Stbench: Assessing The Ability Of Large Language Models In Spatio-temporal Analysis · The Large Language Model Bible Contribute to LLM-Bible

Stbench: Assessing The Ability Of Large Language Models In Spatio-temporal Analysis

Li Wenbin, Yao Di, Zhao Ruibo, Chen Wenjie, Xu Zijie, Luo Chengxue, Gong Chang, Jing Quanliang, Tan Haining, Bi Jingping. Arxiv 2024

[Paper] [Code]    
Applications Ethics And Bias Fine Tuning GPT Has Code In Context Learning Model Architecture Pretraining Methods Prompting Tools Training Techniques

The rapid evolution of large language models (LLMs) holds promise for reforming the methodology of spatio-temporal data mining. However, current works for evaluating the spatio-temporal understanding capability of LLMs are somewhat limited and biased. These works either fail to incorporate the latest language models or only focus on assessing the memorized spatio-temporal knowledge. To address this gap, this paper dissects LLMs’ capability of spatio-temporal data into four distinct dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. We curate several natural language question-answer tasks for each category and build the benchmark dataset, namely STBench, containing 13 distinct tasks and over 60,000 QA pairs. Moreover, we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral. Experimental results reveal that existing LLMs show remarkable performance on knowledge comprehension and spatio-temporal reasoning tasks, with potential for further enhancement on other tasks through in-context learning, chain-of-though prompting, and fine-tuning. The code and datasets of STBench are released on https://github.com/LwbXc/STBench.

Similar Work