[Paper]
AI developers often apply safety alignment procedures to prevent the misuse of their AI systems. For example, before Meta released Llama 2-Chat - a collection of instruction fine-tuned large language models - they invested heavily in safety training, incorporating extensive red-teaming and reinforcement learning from human feedback. We explore the robustness of safety training in language models by subversively fine-tuning Llama 2-Chat. We employ quantized low-rank adaptation (LoRA) as an efficient fine-tuning method. With a budget of less than $200 and using only one GPU, we successfully undo the safety training of Llama 2-Chat models of sizes 7B, 13B, and 70B and on the Mixtral instruct model. Specifically, our fine-tuning technique significantly reduces the rate at which the model refuses to follow harmful instructions. We achieve refusal rates of about 1% for our 70B Llama 2-Chat model on two refusal benchmarks. Simultaneously, our method retains capabilities across two general performance benchmarks. We show that subversive fine-tuning is practical and effective, and hence argue that evaluating risks from fine-tuning should be a core part of risk assessments for releasing model weights. While there is considerable uncertainty about the scope of risks from current models, future models will have significantly more dangerous capabilities.