Criticeval: Evaluating Large Language Model As Critic · The Large Language Model Bible Contribute to LLM-Bible

Criticeval: Evaluating Large Language Model As Critic

Lan Tian, Zhang Wenwei, Xu Chen, Huang Heyan, Lin Dahua, Chen Kai, Mao Xian-ling. Arxiv 2024

[Paper]    
Applications GPT Model Architecture

Critique ability, i.e., the capability of Large Language Models (LLMs) to identify and rectify flaws in responses, is crucial for their applications in self-improvement and scalable oversight. While numerous studies have been proposed to evaluate critique ability of LLMs, their comprehensiveness and reliability are still limited. To overcome this problem, we introduce CriticEval, a novel benchmark designed to comprehensively and reliably evaluate critique ability of LLMs. Specifically, to ensure the comprehensiveness, CriticEval evaluates critique ability from four dimensions across nine diverse task scenarios. It evaluates both scalar-valued and textual critiques, targeting responses of varying quality. To ensure the reliability, a large number of critiques are annotated to serve as references, enabling GPT-4 to evaluate textual critiques reliably. Extensive evaluations of open-source and closed-source LLMs first validate the reliability of evaluation in CriticEval. Then, experimental results demonstrate the promising potential of open-source LLMs, the effectiveness of critique datasets and several intriguing relationships between the critique ability and some critical factors, including task types, response qualities and critique dimensions. Datasets and evaluation toolkit for CriticEval will be publicly released.

Similar Work