[Paper]
We propose a framework - Prompt, Generate, Train (PGT) - to efficiently develop a generative question-answering model for open-book question-answering over a proprietary collection of text documents. The framework adapts a retriever augmented generation (RAG) model to the target domain using supervised fine-tuning and reinforcement learning with synthetic feedback in a few-shot setting. This, we hypothesize, will yield an aligned, uncertainty calibrated model that is competitive with GPT-4 based in-context retrieval augmented generation in generating relevant answers at lower serving costs. The framework’s synthetic generation pipeline will generate synthetic training data comprising <passage, question, answer> tuples using an open-source LLM and a novel consistency filtering scheme. The pipeline will be designed to generate both abstractive and extractive questions that span the entire corpus. The framework proposes to fine-tune a smaller RAG model comprising a dense retriever (ColBERTv2) and a smaller sized LLM on the synthetic dataset. In parallel, the framework will train a Reward model to score domain grounded answers higher than hallucinated answers using an a priori relevance ordering of synthetically assembled samples. In the next phase, the framework will align the RAG model with the target domain using reinforcement learning (Proximal Policy Optimization). This step may improve the RAG model’s ability to generate grounded answers and ignore out of domain questions. In the final phase, the framework will calibrate the model’s uncertainty for extractive question-answers.