How Large Language Models Encode Context Knowledge? A Layer-wise Probing Study · The Large Language Model Bible Contribute to LLM-Bible

How Large Language Models Encode Context Knowledge? A Layer-wise Probing Study

Ju Tianjie, Sun Weiwei, Du Wei, Yuan Xinwei, Ren Zhaochun, Liu Gongshen. Arxiv 2024

[Paper] [Code]    
GPT Has Code Model Architecture RAG Reinforcement Learning

Previous work has showcased the intriguing capability of large language models (LLMs) in retrieving facts and processing context knowledge. However, only limited research exists on the layer-wise capability of LLMs to encode knowledge, which challenges our understanding of their internal mechanisms. In this paper, we devote the first attempt to investigate the layer-wise capability of LLMs through probing tasks. We leverage the powerful generative capability of ChatGPT to construct probing datasets, providing diverse and coherent evidence corresponding to various facts. We employ \(\mathcal V\)-usable information as the validation metric to better reflect the capability in encoding context knowledge across different layers. Our experiments on conflicting and newly acquired knowledge show that LLMs: (1) prefer to encode more context knowledge in the upper layers; (2) primarily encode context knowledge within knowledge-related entity tokens at lower layers while progressively expanding more knowledge within other tokens at upper layers; and (3) gradually forget the earlier context knowledge retained within the intermediate layers when provided with irrelevant evidence. Code is publicly available at https://github.com/Jometeorie/probing_llama.

Similar Work