[Paper]
The integration of large language models (LLMs) in mental health care is an emerging field. There is a need to systematically review the application outcomes and delineate the advantages and limitations in clinical settings. This review aims to provide a comprehensive overview of the use of LLMs in mental health care, assessing their efficacy, challenges, and potential for future applications. A systematic search was conducted across multiple databases including PubMed, Web of Science, Google Scholar, arXiv, medRxiv, and PsyArXiv in November 2023. All forms of original research, peer-reviewed or not, published or disseminated between October 1, 2019, and December 2, 2023, are included without language restrictions if they used LLMs developed after T5 and directly addressed research questions in mental health care settings. From an initial pool of 313 articles, 34 met the inclusion criteria based on their relevance to LLM application in mental health care and the robustness of reported outcomes. Diverse applications of LLMs in mental health care are identified, including diagnosis, therapy, patient engagement enhancement, etc. Key challenges include data availability and reliability, nuanced handling of mental states, and effective evaluation methods. Despite successes in accuracy and accessibility improvement, gaps in clinical applicability and ethical considerations were evident, pointing to the need for robust data, standardized evaluations, and interdisciplinary collaboration. LLMs hold substantial promise for enhancing mental health care. For their full potential to be realized, emphasis must be placed on developing robust datasets, development and evaluation frameworks, ethical guidelines, and interdisciplinary collaborations to address current limitations.