The Hallucinations Leaderboard -- An Open Effort To Measure Hallucinations In Large Language Models · The Large Language Model Bible Contribute to LLM-Bible

The Hallucinations Leaderboard -- An Open Effort To Measure Hallucinations In Large Language Models

Hong Giwon, Gema Aryo Pradipta, Saxena Rohit, Du Xiaotang, Nie Ping, Zhao Yu, Perez-beltrachini Laura, Ryabinin Max, He Xuanli, Fourrier Clémentine, Minervini Pasquale. Arxiv 2024

[Paper]    
Applications

Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text. However, these models are prone to ``hallucinations’’ – outputs that do not align with factual reality or the input context. This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations. The leaderboard uses a comprehensive set of benchmarks focusing on different aspects of hallucinations, such as factuality and faithfulness, across various tasks, including question-answering, summarisation, and reading comprehension. Our analysis provides insights into the performance of different models, guiding researchers and practitioners in choosing the most reliable models for their applications.

Similar Work