Generative Visual Instruction Tuning · The Large Language Model Bible Contribute to LLM-Bible

Generative Visual Instruction Tuning

Hernandez Jefferson, Villegas Ruben, Ordonez Vicente. Arxiv 2024

[Paper]    
GPT Language Modeling Merging Model Architecture Multimodal Models Reinforcement Learning

We propose to use machine-generated instruction-following data to improve the zero-shot capabilities of a large multimodal model with additional support for generative and image editing tasks. We achieve this by curating a new multimodal instruction-following set using GPT-4V and existing datasets for image generation and editing. Using this instruction set and the existing LLaVA-Finetune instruction set for visual understanding tasks, we produce GenLLaVA, a Generative Large Language, and Visual Assistant. GenLLaVA is built through a strategy that combines three types of large pre-trained models through instruction finetuning: LLaMA for language modeling, SigLIP for image-text matching, and StableDiffusion for text-to-image generation. Our model demonstrates visual understanding capabilities on par with LLaVA and additionally demonstrates competitive results with native multimodal models such as Unified-IO 2, paving the way for building advanced general-purpose visual assistants by effectively re-using existing multimodal models. We open-source our dataset, codebase, and model checkpoints to foster further research and application in this domain.

Similar Work