Stochastic Parrots Looking For Stochastic Parrots: Llms Are Easy To Fine-tune And Hard To Detect With Other Llms · The Large Language Model Bible Contribute to LLM-Bible

Stochastic Parrots Looking For Stochastic Parrots: Llms Are Easy To Fine-tune And Hard To Detect With Other Llms

Henrique Da Silva Gameiro, Kucharavy Andrei, Guerraoui Rachid. Arxiv 2023

[Paper]    
Attention Mechanism Fine Tuning Model Architecture Pretraining Methods Prompting Reinforcement Learning Security Tools Training Techniques Transformer

The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors’ reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common “reinforcement from critic” loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.

Similar Work