Pive: Prompting With Iterative Verification Improving Graph-based Generative Capability Of Llms · The Large Language Model Bible Contribute to LLM-Bible

Pive: Prompting With Iterative Verification Improving Graph-based Generative Capability Of Llms

Han Jiuzhou, Collier Nigel, Buntine Wray, Shareghi Ehsan. Arxiv 2023

[Paper]    
GPT Model Architecture Prompting Tools Training Techniques

Large language models (LLMs) have shown great abilities of solving various natural language tasks in different domains. Due to the training objective of LLMs and their pre-training data, LLMs are not very well equipped for tasks involving structured data generation. We propose a framework, Prompting with Iterative Verification (PiVe), to improve graph-based generative capability of LLMs. We show how a small language model could be trained to act as a verifier module for the output of an LLM~(i.e., ChatGPT, GPT-4), and to iteratively improve its performance via fine-grained corrective instructions. We also show how the verifier module could apply iterative corrections offline for a more cost-effective solution to the text-to-graph generation task. Experiments on three graph-based datasets show consistent improvement gained via PiVe. Additionally, we create GenWiki-HIQ and highlight that the verifier module can be used as a data augmentation tool to help improve the quality of automatically generated parallel text-graph datasets.

Similar Work