Building Trustworthy Neurosymbolic AI Systems: Consistency, Reliability, Explainability, And Safety · The Large Language Model Bible Contribute to LLM-Bible

Building Trustworthy Neurosymbolic AI Systems: Consistency, Reliability, Explainability, And Safety

Gaur Manas, Sheth Amit. Arxiv 2023

[Paper]    
Applications Attention Mechanism GPT Interpretability And Explainability Model Architecture Reinforcement Learning Responsible AI Tools

Explainability and Safety engender Trust. These require a model to exhibit consistency and reliability. To achieve these, it is necessary to use and analyze data and knowledge with statistical and symbolic AI methods relevant to the AI application - neither alone will do. Consequently, we argue and seek to demonstrate that the NeuroSymbolic AI approach is better suited for making AI a trusted AI system. We present the CREST framework that shows how Consistency, Reliability, user-level Explainability, and Safety are built on NeuroSymbolic methods that use data and knowledge to support requirements for critical applications such as health and well-being. This article focuses on Large Language Models (LLMs) as the chosen AI system within the CREST framework. LLMs have garnered substantial attention from researchers due to their versatility in handling a broad array of natural language processing (NLP) scenarios. For example, ChatGPT and Google’s MedPaLM have emerged as highly promising platforms for providing information in general and health-related queries, respectively. Nevertheless, these models remain black boxes despite incorporating human feedback and instruction-guided tuning. For instance, ChatGPT can generate unsafe responses despite instituting safety guardrails. CREST presents a plausible approach harnessing procedural and graph-based knowledge within a NeuroSymbolic framework to shed light on the challenges associated with LLMs.

Similar Work