Instruction-guided Scene Text Recognition · The Large Language Model Bible Contribute to LLM-Bible

Instruction-guided Scene Text Recognition

Du Yongkun, Chen Zhineng, Su Yuchen, Jia Caiyan, Jiang Yu-gang. Arxiv 2024

[Paper] [Code]    
Has Code Merging Multimodal Models Reinforcement Learning Training Techniques

Multi-modal models show appealing performance in visual recognition tasks recently, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models are either inefficient or cannot be trivially upgraded to scene text recognition (STR) due to the composition difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises \(\left \langle condition,question,answer\right \rangle\) instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops lightweight instruction encoder, cross-modal feature fusion module and multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that considerably differs from current methods. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and efficient inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of both rarely appearing and morphologically similar characters, which were previous challenges. Code at \href{https://github.com/Topdu/OpenOCR}{this http URL}.

Similar Work