[Paper]
Temporal reasoning over tabular data presents substantial challenges for large language models (LLMs), as evidenced by recent research. In this study, we conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of LLMs. Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for tabular temporal question answering. We provide critical insights for improving LLM performance in temporal reasoning tasks with tabular data. Furthermore, we introduce a novel approach, C.L.E.A.R to strengthen LLM capabilities in this domain. Our findings demonstrate that our method significantly improves evidence-based reasoning across various models. Additionally, our experimental results reveal that indirect supervision with auxiliary data substantially boosts model performance in these tasks. This work contributes to a deeper understanding of LLMs’ temporal reasoning abilities over tabular data and promotes advancements in their application across diverse fields.