RL-JACK: Reinforcement Learning-powered Black-box Jailbreaking Attack Against Llms · The Large Language Model Bible Contribute to LLM-Bible

RL-JACK: Reinforcement Learning-powered Black-box Jailbreaking Attack Against Llms

Chen Xuan, Nie Yuzhou, Yan Lu, Mao Yunshu, Guo Wenbo, Zhang Xiangyu. Arxiv 2024

[Paper]    
Agentic Efficiency And Optimization Prompting Reinforcement Learning Responsible AI Security Training Techniques

Modern large language model (LLM) developers typically conduct a safety alignment to prevent an LLM from generating unethical or harmful content. Recent studies have discovered that the safety alignment of LLMs can be bypassed by jailbreaking prompts. These prompts are designed to create specific conversation scenarios with a harmful question embedded. Querying an LLM with such prompts can mislead the model into responding to the harmful question. The stochastic and random nature of existing genetic methods largely limits the effectiveness and efficiency of state-of-the-art (SOTA) jailbreaking attacks. In this paper, we propose RL-JACK, a novel black-box jailbreaking attack powered by deep reinforcement learning (DRL). We formulate the generation of jailbreaking prompts as a search problem and design a novel RL approach to solve it. Our method includes a series of customized designs to enhance the RL agent’s learning efficiency in the jailbreaking context. Notably, we devise an LLM-facilitated action space that enables diverse action variations while constraining the overall search space. We propose a novel reward function that provides meaningful dense rewards for the agent toward achieving successful jailbreaking. Through extensive evaluations, we demonstrate that RL-JACK is overall much more effective than existing jailbreaking attacks against six SOTA LLMs, including large open-source models and commercial models. We also show the RL-JACK’s resiliency against three SOTA defenses and its transferability across different models. Finally, we validate the insensitivity of RL-JACK to the variations in key hyper-parameters.

Similar Work