[Paper]
Modern hardware design starts with specifications provided in natural
language. These are then translated by hardware engineers into appropriate
Hardware Description Languages (HDLs) such as Verilog before synthesizing
circuit elements. Automating this translation could reduce sources of human
error from the engineering process. But, it is only recently that artificial
intelligence (AI) has demonstrated capabilities for machine-based end-to-end
design translations. Commercially-available instruction-tuned Large Language
Models (LLMs) such as OpenAI’s ChatGPT and Google’s Bard claim to be able to
produce code in a variety of programming languages; but studies examining them
for hardware are still lacking. In this work, we thus explore the challenges
faced and opportunities presented when leveraging these recent advances in LLMs
for hardware design. Given that these conversational' LLMs perform best when
used interactively, we perform a case study where a hardware engineer
co-architects a novel 8-bit accumulator-based microprocessor architecture with
the LLM according to real-world hardware constraints. We then sent the
processor to tapeout in a Skywater 130nm shuttle, meaning that this
Chip-Chat’
resulted in what we believe to be the world’s first wholly-AI-written HDL for
tapeout.