Sequence-to-sequence Spanish Pre-trained Language Models · The Large Language Model Bible Contribute to LLM-Bible

Sequence-to-sequence Spanish Pre-trained Language Models

Araujo Vladimir, Trusca Maria Mihaela, TufiƱo Rodrigo, Moens Marie-francine. Arxiv 2023

[Paper] [Code]    
Applications BERT Fine Tuning GPT Has Code Merging Model Architecture

In recent years, significant advancements in pre-trained language models have driven the creation of numerous non-English language variants, with a particular emphasis on encoder-only and decoder-only architectures. While Spanish language models based on BERT and GPT have demonstrated proficiency in natural language understanding and generation, there remains a noticeable scarcity of encoder-decoder models explicitly designed for sequence-to-sequence tasks, which aim to map input sequences to generate output sequences conditionally. This paper breaks new ground by introducing the implementation and evaluation of renowned encoder-decoder architectures exclusively pre-trained on Spanish corpora. Specifically, we present Spanish versions of BART, T5, and BERT2BERT-style models and subject them to a comprehensive assessment across various sequence-to-sequence tasks, including summarization, question answering, split-and-rephrase, dialogue, and translation. Our findings underscore the competitive performance of all models, with the BART- and T5-based models emerging as top performers across all tasks. We have made all models publicly available to the research community to foster future explorations and advancements in Spanish NLP: https://github.com/vgaraujov/Seq2Seq-Spanish-PLMs.

Similar Work